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Differential elliptic flow and particle spectra are calculated
taking into account the finite transport opacity of the gluon
plasma produced in Au+Au at Ecm ∼ 130 A GeV at RHIC.
Covariant numerical solutions of the ultrarelativistic Boltz-
mann equation are obtained using the MPC parton cascade
technique. For typical pQCD (∼ 3 mb) elastic cross sections,
extreme initial gluon densities, dNg/dη ∼ 15000, are required
to reproduce the elliptic flow saturation pattern reported by
STAR. However, we show that the solutions depend mainly
on the transport opacity, χ =

∫

dzσtρg, and thus the data can
also be reproduced with dNg/dη ∼ 1000, but with extreme
elastic parton cross sections, ∼ 45 mb. We demonstrate that
the spectra and elliptic flow are dominated by numerical ar-
tifacts unless parton subdivisions ∼ 100−1000 are applied to
retain Lorentz covariance for RHIC initial conditions.

PACS 12.38.Mh; 24.85.+p; 25.75.-q

I. INTRODUCTION

Differential elliptic flow, v2(p⊥) = 〈cos(2φ)〉p⊥
, the sec-

ond Fourier moment of the azimuthal momentum distri-
bution for fixed p⊥, is one of the important experimental
probes of collective dynamics in A + A reactions [1–13].
The discovery [14] of a factor of two enhancement of el-
liptic flow in noncentral nuclear collisions at RHIC rela-
tive to SPS [15] has generated even more interest in this
“barometric” measure of collective transverse flow. In ad-
dition, preliminary STAR data reported in [16] suggest
a remarkable saturation property of this flow at high p⊥
with v2(p⊥ > 2 GeV) ∼ 0.15. This corresponds to a fac-
tor of two azimuthal angle asymmetry of high-p⊥ particle
production relative to the reaction plane. This collec-
tive effect depends strongly on the dynamics in a heavy
ion collision and therefore provides important constraints
about the density and effective energy loss of partons. In
particular, we show that it constrains the transport opac-
ity of the produced gluon plasma.

Predictions of collective elliptic flow in noncentral nu-
clear collisions were first based on ideal (nondissipative)
hydrodynamics [1,2,6]. Unlike at lower energies, ideal hy-
drodynamics seems to reproduce the (low pT < 2 GeV)
data [14] at RHIC remarkably well. However, it fails to
saturate at high p⊥ > 2 GeV as indicated by the prelim-
inary data [16]. The hydrodynamic results were found
in [6] to be surprisingly insensitive to the choice of ini-

tial conditions, equation of state and freezeout criteria,
once the observed dNch/dη was reproduced, leaving no
adjustable hydrodynamic model parameters with which
the saturation property could be reproduced.

The lack of saturation in ideal hydrodynamics is due
to the assumption of zero mean free path and that local
equilibrium can be maintained until a chosen freezeout
3D hypersurface is reached. This idealization is certainly
invalid outside some finite domain of phase space in heavy
ion collisions [17]. Finite transition rates are expected
to produce nonequilibrium deviations from the predicted
hydrodynamic flow pattern. Covariant Boltzmann trans-
port theory provides a convenient framework to estimate
dissipative effects. The assumption of local equilibrium
is replaced by the assumption of a finite local mean free
path λ(s, x) ≡ 1/σ(s)n(x). The theory then naturally
interpolates between free streaming (λ = ∞) and ideal
hydrodynamics (λ = 0).

The previous calculations of collective flow from co-
variant transport theory [9,18,19] lead to too small col-
lective effects. This was due to the use of small per-
turbative QCD cross sections and dilute parton initial
densities based on HIJING [20]. Recently, denser parton
initial conditions were suggested based on gluon satura-
tion models [21]. Initial gluon densities up to five times
higher than from HIJING were predicted. The question
studied in this paper is whether such initial conditions
may be dense enough to generate the observed collective
flow even with pQCD elastic cross sections. In this pa-
per, we explore the dependence of differential elliptic flow
on initial conditions, or equivalently1, on the magnitude
of partonic cross section.

We note that most hadronic cascade models supple-
mented with string dynamics [4,11] underpredict ellip-
tic flow because the spatial asymmetry is too small after
hadronization to generate the observed momentum space
asymmetry. The reason is that hadronization through
longitudinal string excitations reduces the strength of
partonic level elliptic flow. To produce sufficient ellip-
tic flow in string models, other mechanisms have to be
included such as color exchange. While the impact pa-
rameter dependence of elliptic flow at RHIC can be repro-

1The equivalence is due to the scaling property explained in
Section IIB.
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duced via color exchange [10], it is not known whether the
saturation property studied here can also be explained.

The saturation and eventual decrease of v2 at high p⊥
has been predicted as a consequence of finite inelastic
parton energy loss [12,13]. Those predictions however
assumed the validity of an Eikonal approach at moder-
ate pT ∼ 10 GeV. In addition, the pQCD computable jet
quenched part had to be joined phenomenologically onto
a parametrized “soft” nonperturbative component below
pT < 2 GeV/c. Covariant transport theory overcomes
the need to treat soft and hard dynamics on different
footings. It is the only practical self-consistent theoreti-
cal tool at present to address simultaneously both the soft
collective component and the far from equilibrium high-
p⊥ component. While current parton cascade techniques
lack at present a practical means to implement covariant
inelastic energy loss, it is of considerable theoretical in-
terest to solve covariant Boltzmann theory even in the
elastic limit since so few solutions are known. We solve
that theory numerically here to get insight into the dy-
namical interplay between the soft and hard components
over a wide dynamical range of parameters.

For large enough elastic opacities, the observed collec-
tive flow strength can certainly be reproduced [19]. The
outstanding question which we focus on is whether the
detailed pattern of deviations from ideal hydrodynamic
flow and its saturation at high p⊥ can also be understood
quantitatively in this particular dynamical framework.

Forerunners of this study [9,19] computed elliptic flow
for partonic systems starting from initial conditions ex-
pected at RHIC. In this paper we extend those studies
in three aspects. We compute the p⊥-differential ellip-
tic flow v2(p⊥). The consequences of hadronization are
investigated, which is necessary to compare to the obser-
vations. Finally, we use realistic diffuse nuclear geometry
for the initial conditions.

We compute the partonic evolution with MPC [22], a
newly formulated, covariant, parton kinetic theory tech-
nique. MPC is an extension of the covariant parton cas-
cade algorithm, ZPC [23]. Both MPC and ZPC have been
extensively tested [24,25] and compared to analytic trans-
port solutions and covariant Euler and Navier-Stokes dy-
namics in 1+1D geometry. A critical feature of both
these algorithms is the implementation of the parton sub-
division technique proposed by Pang [25,26].

Extensions of MPC to include inelastic 2 ↔ 3 partonic
processes [18] are under development. In this paper, we
apply MPC in the pure elastic parton interactions mode
as in ZPC [27].

II. COVARIANT TRANSPORT THEORY

A. Transport equation

We consider here, as in Refs. [26,23,22,17], the sim-
plest but nonlinear form of Lorentz-covariant Boltzmann

transport theory in which the on-shell phase space den-
sity f(x,p), evolves with an elastic 2 → 2 rate as

pµ
1∂µf1 =

∫

2

∫

3

∫

4

(f3f4 − f1f2)W12→34δ
4(p1 + p2 − p3 − p4)

+ S(x,p1). (1)

Here W is the square of the scattering matrix element,

the integrals are shorthands for
∫

i

≡
∫

g d3pi

(2π)3Ei
, where

g is the number of internal degrees of freedom, while
fj ≡ f(x,pj). The initial conditions are specified by the
source function S(x,p), which we discuss at the end of
this Subsection.

For our applications below, we interpret f(x,p) as
describing an ultrarelativistic massless gluon gas with
g = 16 (8 colors, 2 helicities). We neglect quark degrees
of freedom because at RHIC gluons are more abundant.

In principle, the transport equation (1) could be ex-
tended for bosons with the substitution f1f2 → f1f2(1 +
f3)(1+ f4) and a similar one for f3f4. In practice, no co-
variant algorithm yet exists to handle such nonlinearities.
We therefore limit our study to quadratic dependence of
the collision integral on f .

The elastic gluon scattering matrix elements in dense
parton systems are modeled by a Debye-screened form as
in Ref. [9]:

dσel

dt
= σ0(s)

(

1 +
µ2

s

)

µ2

(t + µ2)2
, (2)

where µ is the screening mass, σ0(s) = 9πα2
s(s)/2µ2 is

the total cross section. For simplicity, we will assume σ0

to be energy independent, neglecting its weak logarithmic
dependence on s in the energy range relevant at RHIC.

For small values of µ, forward-peaked scattering is fa-
vored, while as µ increases the angular distribution be-
comes more and more isotropic. For a fixed total cross
section2, the relevant transport cross section is

σt(s) ≡
∫

dσel sin2 θcm =

∫

dt
dσel

dt

4t

s

(

1 − t

s

)

= σ04z(1 + z) [(2z + 1) ln(1 + 1/z)− 2] , (3)

where z ≡ µ2/s. This is a monotonic function of µ and
maximal in the isotropic (µ → ∞) case. In the small
angle dominated limit, with z ≪ 1, σt/σ0 ≈ 4z(ln 1/z −
2).

It is important to emphasize that while the cross sec-
tion suggests a geometrical picture of action over fi-
nite distances, we use Eq. (2) only as a convenient
parametrization to describe the effective local transition

2To keep the total cross section constant as a function of µ,
one of course has to adjust the coupling αs accordingly.
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probability, W . In the present study this is simply mod-
eled as W (t) = s dσ/dt. The particle subdivision tech-
nique (see next Subsection) needed to recover covariance
removes all notion of nonlocality in this approach, just
like in hydrodynamics. Thus, the cross sections, e.g., 100
mb, used in the present study to simulate a high collision
rate do not imply acausal action at a distance.

For Au+Au collisions, the initial condition was taken
to be a longitudinally boost invariant Bjorken tube in
local thermal equilibrium at temperature T0 at proper
time τ0 = 0.1 fm/c with uniform pseudorapidity η ≡
1/2 log((t + z)/(t − z)) distribution between |η| < 5.
The transverse density distribution was assumed to be
proportional to the binary collision distribution for two
Woods-Saxon distributions. For collisions at impact pa-
rameter b the transverse binary collision profile is

dN(b)

dηd2x⊥
= σjetTA

(

x⊥ +
b

2

)

TA

(

x⊥ − b

2

)

, (4)

where TA(b) ≡
∫

dzρA(
√

z2 + b2), in terms of the dif-
fuse nuclear density ρA(r). The pQCD jet cross section
normalization, σjet, and the temperature T0 were deter-
mined by fitting the gluon minijet transverse momentum
spectrum predicted by HIJING [20] for central Au+Au
collisions at

√
s = 130A GeV (without shadowing and jet

quenching). This gives dN(0)/dη = 210 and T0 = 700
MeV.

Evolutions from different initial densities (but the same
density profile) can be obtained by varying the cross sec-
tion only and using the scaling property explained in Sec-
tion II C.

B. Parton Subdivision

We utilize the parton cascade method to solve the
Boltzmann transport equation (1). A critical drawback
of all cascade algorithms is that they inevitably lead to
numerical artifacts that violate Lorentz covariance. This
occurs because particle interactions are simulated to oc-
cur whenever the distance of closest approach (in the

relative c.m.) is d <
√

σ0/π.
Acausal (superluminal) propagation due to action at a

distance leads to severe numerical artifacts. In particular,
the transverse energy evolution dET (τ)/dy and the final
asymptotic transverse energy per unit rapidity are frame
dependent [17].

To recover the local character of equation (1) and hence
Lorentz covariance, it is essential to use the parton sub-
division technique [26,23]. This technique is based on the
covariance of Eq. (1) under the transformation

f → f ′ ≡ ℓ f, W → W ′ ≡ W/ℓ (σ → σ′ = σ/ℓ) , (5)

where ℓ is the number of particle subdivisions. The mag-
nitude of numerical artifacts is governed by the dilute-
ness of the system

√
σ/λMFP , which scales with 1/

√
ℓ

[25]. Lorentz violation therefore formally vanishes in the
ℓ → ∞ limit. The convergence to the accurate covariant
solution with ℓ is slower if the density or cross section
increases.

Figures 1 and 2 illustrate the effect of Lorentz violation
on the observables studied in this paper. For insufficient
particle subdivision, elliptic flow and the p⊥ spectra are
dominated by numerical artifacts. In particular, ellip-
tic flow is significantly underpredicted, while the high-
p⊥ spectrum exhibits an unphysical “reheating” during
the expansion. For the initial conditions for these plots,
these numerical artifacts disappear only when the parti-
cle subdivision reaches ∼ 200. This reinforces the results
by Ref. [17], where very high ∼ 100 − 1000 subdivisions
were needed to obtain accurate numerical solutions of the
transport equation (1) for initial conditions expected at
RHIC.

C. Scaling of the transport solutions

Subdivision covariance (5) actually implies that the
transport equation has a broad dynamical range, and
the solution for any given initial condition and transport
property immediately provides the solution to a broad
band of suitably scaled initial conditions and transport
properties. This is because solutions for problems with
ℓ times larger the initial density dN/dηd2x⊥, but with
one ℓ-th the reaction rate can be mapped to the original
(ℓ = 1) case for any ℓ. We must use subdivision to elimi-
nate numerical artifacts. However, once that is achieved,
we have actually found the solution to a whole class of
suitably rescaled problems.

The dynamical range of the transport equation (1) is
further increased by its covariance under coordinate and
momentum rescaling [17], leading to covariance of the
transport theory under

f(x,p) → f ′(x,p) ≡ ℓ−3
p ℓ f

(

x

ℓx
,
p

ℓp

)

,

W ({pi}) → W ′({pi}) ≡
ℓ2
p

ℓxℓ
W

({

pi

ℓp

})

,

m → m′ = m/ℓp, (6)

where ℓx and ℓp are the coordinate and momentum scal-
ing parameters, respectively. This means [17] that we
can scale one solution to others provided that both µ/T0

and σ0dN/dη remain the same (we cannot exploit co-
ordinate scaling because the nuclear geometry is fixed).
For example, three times the density with one-third the
cross section leaves both parameters the same, hence the
results can be obtained via scaling without further com-
putation.

In general the numerical (cascade) solution of Eq. (1)
tends in the ℓ → ∞ limit toward a covariant physical so-
lution that depends on two scales, µ/T0 and σ0dN/dη. In
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an Eikonal picture of high-p⊥ production, the distribu-
tions are expected to depend on the opacity or the mean
number of collisions in the medium

〈n〉 =
L

λel
=

∫

dt
dσel

dt

∫

dzρ
(

x0 + zn̂, τ =
z

c

)

≈ dN

dy

σ0

2πR2
G

log
RG

τ0
, (7)

where τ0 is the formation proper time and RG is the
effective Gaussian transverse coordinate rms radius.

Our numerical results in Table I show that for a given
centrality and initial gluon density, the average number of
collisions per parton is within 10% accuracy proportional
to σ0 and does not depend on µ/T0:

〈n(b, σ0
dN(0)

dη
,

µ

T0
)〉 ≈ σ0

σ′
0

〈n(b, σ′
0

dN(0)

dη
,
µ′

T ′
0

)〉 . (8)

Therefore, one would naively expect σ0dN/dη to be the
relevant scale.

However, from the point of view of dissipative dynam-
ics via Navier-Stokes and Fokker-Planck equation, the
more relevant dynamical parameter is the effective trans-

port opacity

χ ≡ σt

σ0
〈n〉 = σt〈

∫

dzρ
(

x0 + zn̂, τ =
z

c

)

〉 . (9)

The ensemble average over initial coordinates and direc-
tions is implied above. In addition, σt here stands for
σt ≡ σt(〈s〉), where 〈s〉 = 18T 2

0 is the initial thermal
average of s. This is an approximation to the ensemble
average 〈σt(s)〉.

In general, the transport opacity is a dynamical quan-
tity that we do not know until we solved the transport
equation for the set of parameters b, σ0dN(0)/dη, and
σt/σ0 (or equivalently, µ/T0). However, Eqs. (8) and (9)
imply that for the range of parameters considered in this
study it is approximately proportional to the product of
the two scales σ0dN(0)/dη and σt/σ0:

χ(b, σ0
dN(0)

dη
,
σt

σ0
) ≈

σt
dN(0)

dη

σ′
0

dN ′(0)
dη

〈n(b, σ′
0

dN ′(0)

dη
)〉 . (10)

The nontrivial, impact parameter dependent part
〈n(b, σ0dN(0)/dη〉 is the average number of collisions per
parton as a function of b for a fixed value of σ0dN(0)/dη
(and an arbitrary µ/T0), which is tabulated in Table
I. For example, one could use the values of set E), in
which case the corresponding proportionality constant is
σ′

0dN ′(0)/dη = 3 mb × 210 = 630 mb.
Of course, there is no a priori guarantee that the so-

lutions of Eq. (1) depend only on this transport opacity
parameter. However, as demonstrated in Fig. 3, this
turns out to hold within ∼ 10 − 20% accuracy for ellip-
tic flow and the transverse momentum spectra out to 6
GeV/c for the parameters and initial conditions appro-
priate at RHIC energies. In particular, simulations with

very different impact parameters give the same ratio be-
tween the initial and final spectrum, provided χ is the
same. Hence, the relevant parameter that governs the
evolution of the p⊥ spectra is χ alone. This is not so
for elliptic flow, which is also driven by the initial spatial
anisotropy and thus depends not only on χ but also on
the impact parameter.

III. NUMERICAL RESULTS FOR THE
PARTONIC EVOLUTION

In this Section we present elliptic flow results and p⊥
spectra for the partonic evolution.

Under the scaling (6) the differential elliptic flow
v2(p⊥) and the p⊥ spectrum transform as

v2(p⊥) → v′2(p⊥) ≡ v2

(

p⊥
ℓp

)

dN

d2p⊥
(p⊥) → dN

d2p⊥

′

(p⊥) = ℓ
dN

d2p⊥

(

p⊥

ℓp

)

. (11)

Hence elliptic flow depends on σt and dN/dη only
through the product σtdN/dη. On the other hand, the
p⊥ spectrum depends on σt and dN/dη separately.

As emphasized in the previous Section, we will label
the results by the effective elastic transport opacity χ
from Eq. (9) and the impact parameter b. Possible initial
gluon densities and transport cross sections correspond-
ing to a given transport opacity χ and impact parameter
b can be extracted using Eq. (10), while possible cutoffs
and total cross sections corresponding to a given trans-
port cross section can be obtained from Eq. (3). These
mappings are not unique. A given χ and b correspond
to a whole class of possible initial densities, total cross
sections and cutoffs.

Table I shows the set of simulation parameters for each
simulation, together with χ determined directly from the
average number of cascade collisions per particle. In Ta-
ble I we also introduced letter codes A) through F) as
a quick reference to particular subsets of simulation pa-
rameters. We will include this letter code on most labels
together with χ, for convenience.

The evolution was performed numerically with 40 and
100 mb isotropic cross sections, and with 3, 40 and 100
mb gluonic cross sections with µ/T0 = 1. We used parti-
cle subdivision ℓ = 100 for impact parameters 0, 2, and
4 fm, while ℓ = 220, 450, 1100, and 5000, for b = 6,
8, 10, and 12 fm. Our study of subdivision convergence
shown in Figs. 1 and 2 indicates that with b = 8 fm
and χ = 9.74A) a particle subdivision of ℓ ∼ 200 − 250
is required, which means that for b = 0, 2, and 4 fm,
ℓ = 100 is not sufficient if χ > 8−10. Unfortunately, our
computational resources were insufficient to allow higher
subdivision runs. While this affects elliptic flow results
little because most elliptic flow contributions come from
b > 4 fm, the particle spectra are affected significantly.
Therefore, we only present spectra for b ≥ 6 fm.
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A. Elliptic flow results

Figures 4 and 5 show the final asymptotic gluon elliptic
flow as a function of transverse momentum for different
impact parameters with σtdN(0)/dη ≈ 2580C) mb and
6440A) mb, respectively (the corresponding transport
opacities at b = 0 are χb=0 = 7.90C) and 19.4A)). With
increasing p⊥, elliptic flow increases until p⊥ ∼ 1.5 − 2
GeV, where it saturates, reproducing the pattern ob-
served at RHIC [14,16]. With increasing impact parame-
ter, elliptic flow first monotonically increases, then mono-
tonically decreases, showing a maximum at b ≈ 8 fm.
These features were universal for all the cross sections
we studied, except for a small increase in the location of
the maximum with increasing transport cross section, as
can be seen in Fig. 6, from b = 7 fm at σt = 0.91E)

mb to 9 fm at 66B) mb. Also, as expected, elliptic flow
is a monotonically increasing function of the transport
opacity, if the impact parameter is kept fixed.

Figure 6 shows the p⊥-integrated gluon elliptic flow
as a function of centrality. The cascade reproduces the
trend seen in the STAR data [14] down to very small
centralities ∼ 0.1 − 0.2, where the ideal hydrodynamical
assumption of zero mean free path certainly breaks down.
To quantitatively reproduce the data, transport opacities
χb=0 ∼ 8 − 14 are needed. With the pQCD elastic gg
cross section σ0(µ = T ) ≈ 3 mb, this corresponds to an
initial gluon density dNg(0)/dη ∼ 3000− 5000.

Figure 7 shows the impact-parameter-averaged gluon

elliptic flow as a function of transverse momentum for
different transport opacities. The impact-parameter-
averaged flow was computed via the formula

vav
2 (p⊥) ≡ 2π

πb2
max

∫ bmax

0

db b

∫

dφ cos(2φ) dN
dηd2p⊥

(b)
∫

dφ dN
dηd2p⊥

(b)
,

(12)

with bmax = 12 fm. As we show in the Appendix, for
our transport theory solutions, Eq. (12) gives compara-
ble results to the minimum-bias differential elliptic flow
defined by STAR as

vSTAR
2 (p⊥) ≡

∫ bmax

0 b db
∫

dφ cos(2φ) dN
dηd2p⊥

(b)
∫ bmax

0 b db
∫

dφ dN
dηd2p⊥

(b)
, (13)

which weights flow in more central events preferentially.
This is not the case for ideal hydrodynamic solutions [6],
for which the STAR definition [14] results in much smaller
flow than if Eq. (12) is used.

We use the definition (12) because it can be computed
numerically more reliably in our approach. As discussed
in the beginning of Section III, it is difficult to reduce
cascade numerical artifacts to an acceptable level when
the transport opacity χ is large. For all other parameters
kept fixed, χ increases with decreasing impact parameter,
hence the STAR definition that weights v2 at small b
preferentially is more prone to such numerical artifacts.

Varying the magnitude of energy loss we searched for
the drop in v2(p⊥) at high p⊥ predicted by calculations
based on inelastic parton energy loss [12,13]. Although
those studies consider only effects due to radiative energy
loss, one expects a similar behavior in case of purely elas-
tic energy loss.

Figure 8 shows the dependence of v2(p⊥) on the trans-
port opacity for a fixed impact parameter. We varied the
opacity by changing the screening mass µ. As expected,
elliptic flow decreases with decreasing χ. However, there
is no sign of a drop at high p⊥: within statistical errors,
the results are consistent with a constant flow from 2 to
6 GeV transverse momentum.

B. Particle spectra

Figures 9-11 show the final gluon p⊥ spectra from MPC
as a function of transport opacity and impact parameter.
To show more clearly the degree of quenching due to
multiple elastic collisions, we plot in Figs. 9 and 10 the
ratio of the final spectra to the initial for b = 6, 8, 10, and
12 fm. With HIJING initial densities and pQCD elastic
cross sections, χ ∼ 0.02−0.2 is too small to produce more
than ∼ 10% quenching. As we increase the transport
opacity, quenching of the p⊥ > 2 GeV/c range increases
and by χ ∼ 14− 16 it reaches a factor of ten suppression
at p⊥ > 6 GeV.

While the quenching depends on χ only, the absolute
yield is proportional to the initial dN/dη. Hence from
the absolutely normalized measured spectrum at a given
centrality one could extract both σt and dN(0)/dη. As
seen in Fig. 11, the quenching at high p⊥ is comple-
mented by an enhancement at low p⊥. For clarity, we
normalized all curves at p⊥ = 2 GeV. While the STAR
data [30] are too preliminary to show yet, the slope ap-
pears to be much steeper than the computed gluon slopes
because hadronization further softens the spectra as dis-
cussed later.

C. Transport opacity dependence

In this Section we provide a qualitative explanation
for the remarkable invariance of the results on the ac-
tual angular dependence of the differential cross section
(2). The reason that this simplification occurs is that for
the µ and gluon energy range considered in these plots,
the transport opacity is actually high enough that little
memory of the initial gluon momentum direction remains
after multiple scattering. Thus, isotropic scattering and
µ = T forward scattering both lead to essentially a ran-
dom reorientation of all the gluons involved.

In Fig. 12, aside from a small 10% delta function com-
ponent due to the gluons in the “corona” surface region
that escape without rescattering, the bulk of the minijets
undergo enough rescatterings that their final direction is

5



randomized. In Fig. 13 we also show that the rapid-
ity shift of gluons in each transverse momentum interval
considered has the form close to one expected if local
thermal equilibrium occurred:

dP

d∆y
=

∫

dm2
⊥idyidm2

⊥fm⊥i cosh yi m⊥f cosh(yi + ∆y)

× 1

4T 3
i

1

4T 3
f

e−(m⊥i cosh yi)/Tie−[m⊥f cosh(yi+∆y)]/Tf

=
∆y cosh∆y − sinh ∆y

sinh3 ∆y
. (14)

The randomization of momenta is however not suffi-
cient to ensure the validity of local equilibrium neces-
sary for the applicability of nondissipative (Euler) hy-
drodynamics. This is proven by the dependence of the
transverse momentum spectra and elliptic flow on the fi-

nite opacity parameter itself. In the hydrodynamic limit
χ = ∞ and the transport evolution is identical to the hy-
drodynamical evolution. However, we showed in detail in
a previous study [17] that the solutions of the transport
equation still differ very much from ideal hydrodynam-
ics, for physically extreme χ ∼ 20 opacities. While no
covariant 3+1D Navier-Stokes solutions are yet known,
our transport solutions demonstrate the effects of dissi-
pation through their dependence on 1/χ.

The invariance of the transport solutions to the angu-
lar distributions for a fixed χ indicate however that we
are not extremely far from the local thermal though dis-
sipative limit. In particular, our high opacity solutions
are far from the Eikonal (Knudsen) type dynamics as
considered in [13].

A rough criterion for the validity of the Eikonal ap-
proximation is that the angle between the initial and
final parton momenta in the laboratory frame satisfies
∆θ ≪ 1, say ∆θ < 0.3. For an energetic parton that
undergoes N elastic collisions, this angle can be approx-
imated in an analogous way to random walk as

〈∆θ〉N ≈
√

N〈∆θ2〉N=1 ∼
√

s

2E

√

N〈∆θ2
cm〉 (15)

because the angles transform as ∆θ ≈ ∆θcm
√

s/2E. In
the small angle approximation, we can use Eq. (3) to
estimate

〈∆θ2
cm〉 ≈ σt(s)

σ0
.

Hence, for elastic collisions off typical thermal partons
(s ≈ 6ET , µ = T ), the Eikonal approximation is valid
if σt(s)/σ0 < E/(15TN). For N ∼ 10, this condition is
satisfied for E > 20T . Note that the total cross section
does not depend on the parton energy and therefore the
number of collisions is approximately independent of en-
ergy. In Fig. 12 we see that the Eikonal limit is only
approached slowly as the parton energy increases.

We conclude from these results that the pattern of “jet
quenching”, as observed at RHIC via the suppression of

moderate transverse momentum particles and the satu-
ration of elliptic flow above some critical p⊥, can be re-
produced if sufficiently high transport opacities are pos-
tulated with any angular distribution.

IV. HADRON SPECTRA

The results in the previous Section pertain only to par-
tons. To compare with experimental results, we must
adopt a model of hadronization. Here we compute the
hadronic observables from two different hadronization
schemes.

A. Hadronization via local parton-hadron duality

The simplest hadronization scheme is based on the idea
of local parton-hadron duality. If as in Ref. [21], we as-
sume that each gluon gets converted to a pion with equal
probability for the three isospin states, then we may ap-
proximate the transverse momentum distribution of neg-
ative charged hadrons roughly as

fh−(p⊥) ≈ fπ−(p⊥) =
1

3
fg(p⊥). (16)

With the above prescription, elliptic flow does not

change during hadronization, i.e., Figs. 4–8 show the
negative hadron flow as well. Furthermore, the nega-
tive hadron p⊥ spectra can be obtained from Figs. 9–11
via simply dividing by 3. Consequently, the scaling (11)
holds for the negative hadron flow and spectra as well.

In Fig. 7, the elliptic flow data by STAR are re-
produced with a transport opacity χb=0 = 47.8. For
an initial gluon density dNg(0)/dη = 1000, this corre-
sponds to σt ≈ 14 mb, i.e., to a total cross section of
σ0 ≈ 45 mb with µ = T0. If we took, on the other
hand, the pQCD gg cross section of 3 mb with µ = T0,
this opacity would correspond to an initial gluon density
of dNg(0)/dη ∼ 15000 that is contradicted by the much
smaller observed dNch/dη ≈ 600.

The p⊥ spectra provide a much stronger constraint on
the initial gluon density as their absolute magnitude is
proportional to it. At high opacities (χ >∼ 10), the
need for high particle subdivisions poses a severe com-
putational problem, therefore we can reliably compute
particle spectra for semicentral collisions only. Never-
theless, the data measured by STAR in central collisions,
where quenching due to parton energy loss is expected to
be maximal, provides an important lower bound on the
particle yields. Figure 11 shows that the elastic transport
opacities χ <∼ 20 considered here are compatible with
this lower bound.

On the other hand, the cascade semicentral results are
very much above the preliminary STAR spectra [30] for
central collisions. The problem is that the fragmentation
of quarks and gluons generally soften considerably the
high-p⊥ spectra as we show in the next Section.
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B. Hadronization via independent fragmentation

The next simplest hadronization scheme is the frag-
mentation of gluons as independent jets. We consider
here only the g → π± channel with the next-to-leading-
order fragmentation function taken from Ref. [28]. We
took the scale factor s ≡ log(Q2)/ log(Q2

0) to be zero
because the initial HIJING gluon distribution is already
“self-quenched” due to initial and final state radiation.
Also, since we do not consider the contribution of low-p⊥
soft multiparticle production (beam jet fragmentation),
we consider from now on only hadrons with p⊥ > 2 GeV.

Figure 14 shows the final impact-parameter-averaged
negative hadron flow as a function of the transport opac-
ity. The flow pattern and the magnitude of the flow
are much the same as for partons in Fig. 7. Hence,
we get the same constraint on the initial parameters as
for hadronization via local parton-hadron duality. In the
p⊥ < 2 GeV region this simple calculation does not repro-
duce the data because it does not include contributions
coming from soft physics.

The p⊥ spectra of charged hadrons are shown as a func-
tion of transport opacity and impact parameter in Figs.
15 and 16. In addition to quenching because of energy
loss, the final pion spectra are further quenched due to in-
dependent fragmentation. With this additional quench-
ing, the parton cascade results approach the preliminary
STAR data [30], as indicated in Fig. 17, only for rather
extreme σ0(µ = T ) ≈ 100 mb if HIJING dNg/dy = 210
is assumed, or if σ0 ≈ 25 mb and EKRT dNg/dy = 1000
is assumed. These elastic cross sections exceed the con-
ventional few mb pQCD cross sections at this scale by at
least an order of magnitude.

V. CONCLUSIONS

The MPC parton cascade technique was applied to
solve the covariant Boltzmann transport numerically and
compute new observables at RHIC. Our focus was on the
preliminary differential elliptic flow and charged hadron
moderate p⊥ > 2 GeV/c spectra. We compared results
using two different hadronization schemes: independent
fragmentation and local parton-hadron duality.

Our main result is that if only elastic scattering is
taken into account in the covariant Boltzmann equa-
tion, extremely large densities and/or elastic parton
cross sections, σtotdN/dη ∼ 80 times the HIJING esti-
mate, are needed to reproduce the elliptic flow data [16].
Hadronization via local parton-hadron duality fails to re-
produce the rapidly falling high-p⊥ spectra. However, in-
dependent fragmentation of our MPC solutions compare
well to the charged hadron p⊥ spectra when rather large
elastic transport opacities are postulated.

The solutions clearly demonstrate how finite (even ex-
treme) reaction rates in A + A lead to major deviations

from ideal hydrodynamic transverse flow effects at trans-
verse momentum pT > 2 GeV. The pattern of quenching
found with MPC is surprisingly similar to that obtained
in the two component model of GVW [13]. The main
difference between the high opacity MPC solutions re-
ported here and the low opacity results of GVW is that
the latter include radiative energy loss in an Eikonal for-
malism joined to a parametrized phenomenological “hy-
drodynamic” component.

It is known that radiative energy loss of ultrarelativis-
tic partons is much larger than elastic energy loss in
a medium for a fixed cross section. In GVW a simi-
lar quenching pattern was obtained with more modest
initial densities dNg/dy ∼ 500 and small pQCD elastic
rates because the induced gluon radiation associated with
multiple elastic collisions is large enough to compensate
for the small elastic transport opacity in that case. In
MPC the same level of quenching is achieved only when
the elastic opacity is increased artificially by an order of
magnitude. Therefore, the present study confirms the
expectation that elastic scattering alone is not enough to
generate the degree of collectivity observed now at RHIC.

VI. OUTLOOK

The results presented here underscore the urgent need
to develop practical convergent algorithms to incorpo-
rate inelastic 2 ↔ 3 processes. Preliminary work in Ref.
[18] indicated a rather slow convergence towards Lorentz
covariance using the particle subdivision technique. Un-
like the ℓ−1/2 convergence of 2 → 2 transport solutions, a
much slower rate of convergence ∝ ℓ−1/5 is expected with
the parton subdivision method used to retain Lorentz co-
variance of 2 ↔ 3 processes.

In addition, a more powerful covariant approximation
to Boltzmann transport theory may be needed to over-
come the overwhelming computational difficulty in the
high opacity regime for central collisions. We found that
even for the case of elastic scattering, particle subdivi-
sions up to 1000 are required to maintain covariance and
stabilize the final spectra.

Finally, we note that all results in this paper pertain
to slowly varying, smooth initial conditions. In Ref. [29],
it was suggested that copious minijet production may in-
duce large (nonstatistical) local fluctuations that could
evolve in a turbulent manner. A transport study of dif-
ferential elliptic flow and jet quenching in such inhomoge-
neous initial conditions would be interesting to compare
to the presently known hydrodynamic and Boltzmann
solutions.
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APPENDIX: COMPARISON OF ELLIPTIC FLOW
DEFINITIONS

The main reason that definition (12) gives a very sim-
ilar elliptic flow to definition (13), contrary to the op-
posite observation from hydrodynamics, is the difference
between the hydro and the cascade v2(b) shapes. Hy-
drodynamical models predict an increasing v2 out to
bm ≈ 12 − 13 fm, while the cascade v2 peaks at bm ≈ 8
fm. The b < bm region where v2 is small gets a larger

weight in the STAR definition, while the b > bm region
where v2 is as well small gets a smaller weight. The for-
mer effect tends to reduce elliptic flow, while the latter
tends to increase it. In the case of hydrodynamics, the
first effect dominates, while for the cascade, the second
effect turns out to be larger.

We illustrate this with a simple analytic calculation.
The impact parameter dependence of elliptic flow can be
fitted with the general form

v2(b) = K

(

b

B

)c (

1 − b

B

)d

, (A1)

while the particle spectrum is approximately linear in the
b = 2 − 12 fm region of interest

dN

dydp⊥
(b) = C

(

1 − b

B′

)

. (A2)

Here the parameters K, B, B′, c, d, and C in general
depend on p⊥.

It is easy to show that for the above functions definition
(12) gives an elliptic flow vav

2 = 2K Γ(c+2)Γ(d+1)/Γ(c+
d + 3), while definition (13) yields vSTAR

2 = 6K Γ(c +
2)Γ(d+2)/Γ(c+ d+4), provided we assume B = B′ and
integrate up to bmax = B in both cases. Therefore,

vSTAR
2

vav
2

=
3d + 3

c + d + 3
, (A3)

which is larger than one, if and only if 2d > c. For our
cascade results, the fits to v2(b) give d/c ∼ 0.6 − 1.4
[c(p⊥) ∼ 1.1 − 3.3, d(p⊥) ∼ 1.0 − 4.5], therefore we have
vSTAR
2 (p⊥) > vav

2 (p⊥). On the other hand, hydrody-
namics gives an approximately linear v2(b), i.e., c = 1
and d = 0, which results in vSTAR

2 (p⊥) < vav
2 (p⊥).

We found essentially the same when taking an expo-
nential fit to dN/dp⊥(b) instead of a linear one.

Equation (A3) yields vSTAR
2 /vav

2 ∼ 1.1−1.5 for the cas-
cade (depending on p⊥ and initial conditions). However,
in reality B′ is smaller than B (typically B′ ≈ 11 − 13
fm, while B ≈ 13−16 fm), which influences vSTAR

2 . Fur-
thermore, the upper limit of integration bmax = 12 fm is
also smaller than B. This affects primarily vav

2 , through
the normalization constant 1/b2

max. The integrals in both
definitions are to a large degree insensitive to variations
of bmax because the integrands cut off naturally at large
b.

To illustrate these effects, we repeat the previous ana-
lytic calculation with bmax ≡ xB for vav

2 , while B′ ≡ yB
and bmax ≡ x′B′ for vSTAR

2 . The integrals yield

vSTAR
2 (x′, y) = 6K

yByx′(c + 2, d + 1) − Byx′(c + 3, d + 1)

y3x′2(3 − 2x′)

vav
2 (x) = 2K

Bx(c + 2, d + 1)

x2
, (A4)

where Bz(a, b) ≡
∫ z

0
dt ta−1(1 − t)b−1 is the incomplete

beta function. Thus,

vSTAR
2 (1 − x′, 1 − y)

vSTAR
2 (1, 1)

= 1 +
2d − c

d + 1
y + O(x′2) + O(y2)

vav
2 (1 − x)

vav
2 (1)

= 1 + 2x + O(xmin{2,d+1}) , (A5)

i.e., the leading correction to vav
2 comes at first order in

(bmax −B), while the leading correction to vSTAR
2 comes

at first order in (B′ − B).
For parameters and initial conditions considered in this

study, the corrected formulas (A4) yield vSTAR
2 /vav

2 ∼
0.9 − 1.05 (with x′ = 1). The uncertainty of vSTAR

2 due
to the unknown experimental cutoff bmax (i.e., x′) is less
than 5%. For the hydro (c = 1, d = 0), this analysis gives
a much smaller ratio vSTAR

2 /vav
2 = 3(1−x′)(1−y)/4(1−

x) ≈ 0.75.
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` = 1` = 5` = 50` = 225` = 450
MPC Au+Au � 130A GeVb = 8 fm, � = 9:74A)

p? [GeV℄
v 2atmidrap
idity(jyj<
2)

43210

0.20.150.10.050-0.05
FIG. 1. Strong dependence of the gluon elliptic flow on parton

subdivision as a function of p⊥ is shown for Au+Au at
√

s = 130A

GeV with b = 8 fm. Solutions for transport opacity χ = 9.74A)

(see Table I), and particle subdivisions ℓ = 1, 5, 50, 225, and 450

are shown.

` = 450` = 225` = 50` = 5` = 1initial

MPC Au+Au � 130A GeVb = 8 fm, � = 9:74A)

p? [GeV℄
dN=�dp2 ?dy
[GeV�2 ℄(jyj
<2)

876543210

1001010.10.010.0010.00011e-05
FIG. 2. Strong dependence of the final gluon p⊥ spectra on

parton subdivision is shown for Au+Au at
√

s = 130A GeV with

b = 8 fm. Solutions for transport opacity χ = 9.74A) (see Table I),

and particle subdivisions ℓ = 1, 5, 50, 225, and 450 are shown as

in Fig. 1. The spectra are normalized here to dN(0)/dη = 210.

F) � = 3:68, �=T0 = 0:65C) � = 3:90, �=T0 = 1F) � = 3:40, �=T0 =1
MPC Au+Au� 130A GeV, b = 8 fm

p? [GeV℄
v 2atmidrap
idity(jyj<
2)

43.532.521.510.50

0.140.120.10.080.060.040.020

MPC Au+Au� 130A GeV d))
b)a)

a) � = 0:52C), 0:52E)b) � = 1:14D), 1:32A)) � = 3:40F ), 3:68F ), 3:88F ), 3:90C)d) � = 7:90C), 8:22C), 8:58D)

p? [GeV℄
dNfinal g=dp ?dy
=dNinitial g=dp ?dy
(jyj<2)

876543210

3210.50.40.30.20.1
FIG. 3. The very weak dependence of the elliptic flow and gluon

spectra quenching on the angular distribution of the parton cross

section is shown. See Table I for the simulation parameters corre-

sponding to each curve. The solutions are seen to depend mainly

on the transport opacity.

b = 2 fmb = 4 fmb = 6 fmb = 8 fmb = 10 fmb = 12 fm, � = 0:52C)STAR

2 fm 4 fm 6 fm8 fm10 fm 12 fmMPC Au+Au� 130A GeV
p? [GeV℄

v 2atmidrap
idity(jyj<
2)

43.532.521.510.50

0.20.150.10.050-0.05
FIG. 4. Gluon elliptic flow as a function of p⊥ for Au+Au at

√
s = 130A GeV with impact parameters b = 2, 4, 6, 8, 10, and

12 fm is shown for transport opacities χ = 7.90C), 6.98C), 5.68C) ,

3.90C), 1.98C), and 0.52C). STAR data [14] below 2 GeV/c are

shown. Preliminary STAR data [16] suggest that v2 ∼ 0.15 − 0.17

may saturate in the 2 < pT < 4 GeV/c range.
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b = 2 fmb = 4 fmb = 6 fmb = 8 fmb = 10 fmb = 12 fm, � = 1:32A)STAR

2 fm
4 fm 6 fm8 fm 10 fm

12 fm
MPC Au+Au� 130A GeV

p? [GeV℄
v 2atmidrap
idity(jyj<
2)

43.532.521.510.50

0.20.150.10.050-0.05
FIG. 5. Same as Fig. 4 except that solutions for transport

opacities χ = 19.4A), 17.2A), 14.1A), 9.74A), 5.00A), and 1.32A)

are shown. STAR data [14] below 2 GeV/c are shown. Preliminary

STAR data [16] suggest that v2 ∼ 0.15 − 0.17 may saturate in the

2 < pT < 4 GeV/c range.

hydro, sBC�b=0 = 0:62E)�b=0 = 8:22C)�b=0 = 20:2A)�b=0 = 18:3D)�b=0 = 47:8B)STAR

MPC Au+Au� 130A GeV
dNg=dy = dNg(b = 0)=dy

v 2atmidrap
idity(jyj<
2)

10.80.60.40.20

0.120.10.080.060.040.020
FIG. 6. Gluon elliptic flow as a function of centrality for Au+Au

at
√

s = 130A GeV is shown for transport opacities χb=0 = 0.62E),

8.22C), 18.3D), 20.2A), and 47.8B) for b = 0. Identical to the

charged hadron elliptic flow as a function of nch/nmax
ch

, if the glu-

ons are hadronized via local parton-hadron duality. The ideal hy-

drodynamics result is taken from [6] with the so called sBC initial

conditions. STAR data [14] are also shown.

STAR

MPC Au+Au � 130A GeV

�b=0 = 47:8B)�b=0 = 18:3D)�b=0 = 20:2A)�b=0 = 8:22C)�b=0 = 0:62E)
p? [GeV℄

impatpara
meteraverag
edv 2(jyj<
2)

6543210

0.20.150.10.050-0.05
FIG. 7. Impact parameter averaged gluon elliptic flow is shown

as a function of p⊥ for Au+Au at
√

s = 130A GeV with transport

opacities χb=0 = 0.62E), 8.22C), 18.3D), 20.2A), and 47.8B) for

b = 0. Identical to the charged hadron elliptic flow if the gluons

are hadronized via local parton-hadron duality. STAR data [14]

below 2 GeV/c are shown. Preliminary STAR data [16] suggest

that v2 ∼ 0.15 − 0.17 may saturate in the 2 < pT < 4 GeV/c

range.

� = 1:44F )� = 3:88F )� = 6:86F )� = 9:74A)

MPC Au+Au� 130A GeV, b = 8 fm

p? [GeV℄
v 2atmidrap
ity(jyj<2)

6543210

0.20.150.10.050-0.05
FIG. 8. Gluon elliptic flow as a function of p⊥ is shown for

Au+Au at
√

s = 130A GeV with b = 8 fm and µ/T0 = 0.226, 0.45,

0.71, and 1 (transport opacities χ = 1.44F ), 3.88F ), 6.86F ), and

9.74A)).
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MPC Au+Au� 130A GeV, b = 6 fm

� = 14:1A)� = 12:5D)
� = 5:68C)� = 0:42E)initial

p? [GeV℄
dNfinal g=dp ?dy
=dNinitial g=dp ?dy
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MPC Au+Au� 130A GeV, b = 8 fm
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dNfinal g=dp ?dy
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FIG. 9. Final gluon p⊥ spectra relative to the thermal initial

spectrum are shown as a function of transport opacity for Au+Au

at
√

s = 130A GeV with b = 6 fm (left) and b = 8 fm (right).

Proportional to the charged hadron p⊥ spectra if the gluons are

hadronized via local parton-hadron duality.

MPC Au+Au� 130A GeV, b = 10 fm

B) � = 11:0 A) � = 5:00D) � = 4:36
C) � = 1:98E) � = 0:148initial

p? [GeV℄
dNfinal g=dp ?dy
=dNinitial g=dp ?dy
(jyj<2)

876543210

3210.90.80.70.60.50.40.30.20.1

MPC Au+Au� 130A GeV, b = 12 fm

B) � = 2:90
A) � = 1:32D) � = 1:14C) � = 0:52E) � = 0:040initial

p? [GeV℄
dNfinal g=dp ?dy
=dNinitial g=dp ?dy
(jyj<2)
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FIG. 10. Final gluon p⊥ spectra relative to the thermal initial

spectrum are shown as a function of transport opacity for Au+Au

at
√

s = 130A GeV with b = 10 fm (left) and b = 12 fm (right).

Proportional to the charged hadron p⊥ spectra if the gluons are

hadronized via local parton-hadron duality.

� = 12:5D)� = 14:1A)� = 5:68C)� = 0:42E)� = 0
b = 6 fm

MPC Au+Au� 130A GeV
p? [GeV℄

dN g=dp2 ?dy
=dN g=dp2 ?d
yj p ?=2GeV

876543210

1001010.10.010.0010.0001
FIG. 11. Final gluon p⊥ spectra as a function of transport opac-

ity are shown for Au+Au at
√

s = 130A GeV with b = 6 fm and

with all curves normalized to 1 at p⊥ = 2 GeV. This shows the

quenching at high p⊥ relative to p⊥ = 2 GeV. Also proportional

to the charged hadron p⊥ spectra if the gluons are hadronized via

local parton-hadron duality. Preliminary STAR data [30] suggest

that this ratio may reach 10−4 in the p⊥ ∼ 5 − 6 GeV/c range.

4 GeV < p? < 6 GeV2 GeV < p? < 4 GeVall p?
MPC Au+Au � 130A GeVb = 8 fm, � = 3:40F )

os � � ~pi ~pf=jpijjpf j
os�distrib
ution(jy ij<
1sample)

10.80.60.40.20-0.2-0.4-0.6-0.8-1

1.61.41.210.80.60.40.20
FIG. 12. Correlation between initial and final gluon momentum

direction is shown for Au+Au at
√

s = 130A GeV with b = 8 fm

and transport opacity χ = 3.40F ).
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thermal (�!1)� = 3:40F )
MPC Au+Au� 130A GeV, b = 8 fm

�y � yf � yi
�ydistribut
ion(jy ij<1
sample)

43210-1-2-3-4

1.210.80.60.40.20
FIG. 13. Correlation between initial and final gluon rapidity is

shown for Au+Au at
√

s = 130A GeV with b = 8 fm and transport

opacity χ = 3.40F ).

STAR

independentfragmentation

MPC Au+Au� 130A GeV �b=0 = 47:8B)�b=0 = 18:3D)�b=0 = 20:2A)�b=0 = 8:22C)�b=0 = 0:62E)
p? [GeV℄impatpara

meteraverag
edv 2forh�
(jyj<2)

43.532.521.510.50

0.20.150.10.050-0.05
FIG. 14. Impact parameter averaged negative hadron elliptic

flow as a function of p⊥ is shown for Au+Au at
√

s = 130A GeV

with transport opacities χb=0 = 0.62E), 8.22C , 18.3D), 20.2A), and

47.8B) at b = 0 and hadronization via independent fragmentation.

The p⊥ < 2 GeV region is not plotted because it is dominated

by soft contributions not addressable via pQCD jet fragmentation

physics. STAR data [14] below 2 GeV/c are shown. Preliminary

STAR data [16] suggest that v2 ∼ 0.15 − 0.17 may saturate in the

2 < pT < 4 GeV/c range.

A) � = 14:1D) � = 12:5C) � = 5:68E) � = 0:42hydro, sBC� = 0

MPC Au+Au� 130A GeV, b = 6 fmindep. fragmentationinitial gluons

p? [GeV℄
0:5dN h:�=dp
?dy=dNini

tial g=dp ?dy
(jyj<2)

876543210

1010.10.010.0010.00011e-05 B) � = 21:8A) � = 9:74D) � = 8:58C) � = 3:90E) � = 0:28� = 0

MPC Au+Au� 130A GeV, b = 8 fmindep. fragmentationinitial gluons

p? [GeV℄
0:5dN h:�=dp
?dy=dNini

tial g=dp ?dy
(jyj<2)

876543210

1010.10.010.0010.00011e-05
FIG. 15. Final negative hadron p⊥ spectra via independent

fragmentation are shown relative to the thermal initial gluon spec-

trum for Au+Au at
√

s = 130A GeV with b = 6 fm (left) and

b = 8 fm (right). The ideal hydrodynamics result in the left figure

is taken from [6] with the so called sBC initial conditions. It was

extrapolated beyond p⊥ = 3 GeV using an exponential fit to the

dN/p⊥dp⊥ distribution between 2 and 3 GeV.

B) � = 11:0A) � = 5:00D) � = 4:36C) � = 1:98E) � = 0:148� = 0

MPC Au+Au� 130A GeV, b = 10 fmindep. fragmentationinitial gluons

p? [GeV℄
0:5dN h:�=dp
?dy=dNini

tial g=dp ?dy
(jyj<2)

876543210

1010.10.010.0010.00011e-05 B) � = 2:90A) � = 1:32D) � = 1:14C) � = 0:52E) � = 0:040� = 0

MPC Au+Au� 130A GeV, b = 12 fmindep. fragmentationinitial gluons

p? [GeV℄
0:5dN h:�=dp
?dy=dNini

tial g=dp ?dy
(jyj<2)

876543210

1010.10.010.0010.00011e-05
FIG. 16. Final negative hadron p⊥ spectra via independent

fragmentation are shown relative to the thermal initial gluon spec-

trum for Au+Au at
√

s = 130A GeV with b = 10 fm (left) and

b = 12 fm (right).
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hydro, sBC� = 12:5D)� = 14:1A)� = 5:68C)� = 0:42E)� = 0

b = 6 fmindep. fragmentationMPC Au+Au� 130A GeV
p? [GeV℄

dN g=dp2 ?dy
=dN g=dp2 ?d
yj p ?=2GeV

6543210

1001010.10.010.0010.0001
FIG. 17. Final negative hadron p⊥ spectra via independent

fragmentation are shown relative to the thermal initial gluon spec-

trum for Au+Au at
√

s = 130A GeV with b = 6 fm and with all

curves normalized to 1 at p⊥ = 2 GeV. This shows the quenching

at high p⊥ relative to p⊥ = 2 GeV. The ideal hydrodynamics result

is taken from [6] with the so called sBC initial conditions, and was

extrapolated beyond p⊥ = 3 GeV using an exponential fit to the

dN/p⊥dp⊥ distribution between 2 and 3 GeV. Preliminary STAR

data [30] suggest that this ratio may reach 10−4 in the p⊥ ∼ 5− 6

GeV/c range.

A) σ0 = 100 mb, T0/µ = 1 B) σ0 = 100 mb, T0/µ = 0

b [fm] 〈n〉 χ b [fm] 〈n〉 χ

0 33.0 20.2 0 35.8 47.8

2 31.7 19.4 2 34.3 45.8

4 28.1 17.2 4 30.2 40.2

6 23.0 14.1 6 24.0 32.0

8 15.9 9.74 8 16.3 21.8

10 8.16 5.00 10 8.23 11.0

12 2.15 1.32 12 2.18 2.90

C) σ0 = 40 mb, T0/µ = 1 D) σ0 = 40 mb, T0/µ = 0

b [fm] 〈n〉 χ b [fm] 〈n〉 χ

0 13.4 8.22 0 13.7 18.3

2 12.9 7.90 2 13.2 17.6

4 11.4 6.98 4 11.6 15.5

6 9.26 5.68 6 9.38 12.5

8 6.37 3.90 8 6.44 8.58

10 3.23 1.98 10 3.27 4.36

12 0.86 0.52 12 0.86 1.14

E) σ0 = 3 mb, T0/µ = 1 F) various, b = 8 fm

b [fm] 〈n〉 χ σ0 [fm] T0/µ 〈n〉 χ

0 1.00 0.62 60 1.54 9.51 3.68

2 0.96 0.58 16 0 2.55 3.40

4 0.85 0.52 100 1.40 15.9 6.86

6 0.69 0.42 100 2.21 15.7 3.88

8 0.47 0.28 100 4.43 15.5 1.44

10 0.24 0.148

12 0.064 0.040

TABLE I. Parameters and transport opacity for each transport

solution computed via MPC for the present study.
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